首页> 外文OA文献 >A Multichannel Convolutional Neural Network For Cross-language Dialog State Tracking
【2h】

A Multichannel Convolutional Neural Network For Cross-language Dialog State Tracking

机译:用于跨语言对话的多通道卷积神经网络   状态跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fifth Dialog State Tracking Challenge (DSTC5) introduces a newcross-language dialog state tracking scenario, where the participants are askedto build their trackers based on the English training corpus, while evaluatingthem with the unlabeled Chinese corpus. Although the computer-generatedtranslations for both English and Chinese corpus are provided in the dataset,these translations contain errors and careless use of them can easily hurt theperformance of the built trackers. To address this problem, we propose amultichannel Convolutional Neural Networks (CNN) architecture, in which wetreat English and Chinese language as different input channels of one singleCNN model. In the evaluation of DSTC5, we found that such multichannelarchitecture can effectively improve the robustness against translation errors.Additionally, our method for DSTC5 is purely machine learning based andrequires no prior knowledge about the target language. We consider this adesirable property for building a tracker in the cross-language context, as notevery developer will be familiar with both languages.
机译:第五届对话状态追踪挑战赛(DSTC5)引入了一种新的跨语言对话状态追踪方案,要求参与者根据英语培训语料库构建他们的跟踪器,同时使用未标记的中文语料库对其进行评估。尽管在数据集中提供了英语和中文语料库的计算机生成的翻译,但是这些翻译包含错误,如果不小心使用它们,很容易损害内置跟踪器的性能。为了解决这个问题,我们提出了一种多通道卷积神经网络(CNN)体系结构,其中将英语和汉语作为一种单个CNN模型的不同输入通道进行了处理。在对DSTC5的评估中,我们发现这种多通道体系结构可以有效地提高针对翻译错误的鲁棒性。此外,我们的DSTC5方法纯基于机器学习,不需要任何有关目标语言的先验知识。我们认为这是在跨语言环境中构建跟踪器的理想属性,因为每个开发人员都不会熟悉这两种语言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号